
Curr iculum for

CPSA Cert i f ied Profess ional for

Software Architecture®

– Advanced Level –

Module:
FLEX

Flexible Architecture Models -
Microservices and

Self-Contained Systems

V e r s i o n 1 . 1 (N o v e m b e r 2 0 1 5)

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 2 of 24

© (Copyright), International Software Architecture Qualification Board e. V.
(iSAQB® e. V.) 2014

The curriculum may only be used subject to the following conditions:

1. You wish to obtain the CPSA Certified Professional for Software Architecture Ad-
vanced Level® certificate. For the purpose of obtaining the certificate, it shall be
permitted to use these text documents and/or curricula by creating working copies
for your own computer. If any other use of documents and/or curricula is intended,
for instance for their dissemination to third parties, for advertising etc., please write
to contact@isaqb.org to enquire whether this is permitted. A separate license agree-
ment would then have to be entered into.

2. If you are a trainer, training provider or training organizer, it shall be possible for

you to use the documents and/or curricula once you have obtained a usage license.
Please address any enquiries to contact@isaqb.org. License agreements with com-
prehensive provisions for all aspects exist.

3. If you fall neither into category 1 nor category 2, but would like to use these docu-

ments and/or curricula nonetheless, please also contact the iSAQB e. V. by writing
to contact@isaqb.org. You will then be informed about the possibility of acquiring
relevant licenses through existing license agreements, allowing you to obtain your
desired usage authorizations.

We stress that, as a matter of principle, this curriculum is protected by copyright. The Inter-
national Software Architecture Qualification Board e. V. (iSAQB® e. V.) has exclusive enti-
tlement to these copyrights. The abbreviation "e. V." is part of the iSAQB's official name
and stands for "eingetragener Verein" (registered association), which describes its status as
a legal person according to German law. For the purpose of simplicity, iSAQB e. V. shall
hereafter be referred to as iSAQB without the use of said abbreviation.

mailto:contact@isaqb.org
mailto:contact@isaqb.org.
mailto:contact@isaqb.org.

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 3 of 24

Table of contents

0 INTRODUCTION: GENERAL INFORMATION ABOUT THE ISAQB ADVANCED LEVEL
 5

0.1 WHICH INFORMATION IMPARTS THE ADVANCED LEVEL MODULE? 5
0.2 WHICH SKILLS DO GRADUATES OF THE ADVANCED LEVEL (CPSA-A) HAVE? 5
0.3 PREREQUISITES FOR THE CPSA-A CERTIFICATION ... 5

1 BASIC INFORMATION ABOUT THE FLEX MODULE ... 6

1.1 OUTLINE OF THE CURRICULUM FOR FLEX AND RECOMMENDED TEMPORAL BREAKDOWN 6
1.2 DURATION, DIDACTIC AND ADDITIONAL DETAILS ... 6
1.3 PREREQUISITES FOR THE FLEX MODULE .. 7
1.4 OUTLINE OF THE CURRICULUM FOR FLEX .. 7
1.5 ADDITIONAL INFORMATION, TERMS AND TRANSLATIONS ... 8

2 MOTIVATION ... 9

2.1 TERMS AND CONCEPTS ... 9
2.2 LEARNING GOALS .. 9
2.3 REFERENCES ... 10

3 MODULARISATION .. 11

3.1 TERMS AND CONCEPTS ... 11
3.2 LEARNING GOALS .. 11
3.3 REFERENCES ... 13

4 INTEGRATION .. 14

4.1 TERMS AND CONCEPTS ... 14
4.2 LEARNING GOALS .. 14
4.3 REFERENCES ... 15

5 INSTALLATION AND ROLL OUT ... 16

5.1 TERMS AND CONCEPTS ... 16
5.2 LEARNING GOALS .. 16
5.3 REFERENCES ... 17

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 4 of 24

6 OPERATIONS, MONITORING AND ERROR ANALYSIS .. 18

6.1 TERMS AND CONCEPTS ... 18
6.2 LEARNING GOALS .. 18
6.3 REFERENCES ... 19

7 CASE STUDY ... 20

7.1 TERMS AND CONCEPTS ... 20
7.2 LEARNING GOALS .. 20
7.3 REFERENCES ... 20

8 PERSPECTIVE .. 21

8.1 TERMS AND CONCEPTS ... 21
8.2 LEARNING GOALS .. 21
8.3 REFERENCES ... 22

9 SOURCES AND REFERENCES TO INFORMATION SYSTEMS FOR AGILE
ENVIRONMENTS .. 23

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 5 of 24

0 Introduction: General information about the iSAQB Ad-
vanced Level

0.1 Which information imparts the advanced level module?

• The iSAQB Advanced Level provides a modular training in three different domains
with flexible, customisable training routes. It takes individual tendencies and priori-
ties into account.

• The certification is done in homework. The evaluation and the oral exam is done by
experts named by the iSAQB. Details can be found in the web under
http://isaqb.org.

0.2 Which skills do graduates of the Advanced Level (CPSA-A) have?

CPSA-A graduates are able to:
• Autonomously and methodically design medium to large IT systems in a methodi-

cally well-founded manner.
• Assume technical and contentual responsibility for IT systems with medium to high

criticality.
• Identify, design and document actions to reach non-functional requirements and

assist development teams with their implementation.
• Manage and perform the communication of system’s architecture in medium to

large development teams.

0.3 Prerequisites for the CPSA-A certification

• A successful training and certification as CPSA-F Certified Professional for Software
Architecture Foundation Level®

• A least three years of full-time professional experience in the IT industry working on
the design and development of at least two different IT systems

o Exceptions allowed on request (for example: participation in OpenSource
projects)

• Training and further education within the iSAQB Advanced Level training courses
with a minimum of 70 credit points from all three different areas of competence
(detailed in section 1.2)

o Existing certifications may be charged to these credit points. The list of cur-
rent certificates for which credit points are charged can be found on the
iSAQB homepage.

• Successful completion of the CPSA-A certification test.

http://isaqb.org

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 6 of 24

1 Basic information about the FLEX Module

1.1 Outline of the curriculum for FLEX and recommended temporal breakdown

• Motivation 02:00
• Modularisation 04:00
• Integration 02:30
• Operations, monitoring and error analysis 02:30
• Installation and roll-out 02:30
• Case study 02:30
• Perspective 02:00

1.2 Duration, didactic and additional details

The times below are recommendations. The duration of the FLEX training should be at least
3 days, but may be longer. Vendors can distinguish themselves by duration, didactics, type
and structure of the exercises as well as the detailed course organisation. In particular, the
type of examples and exercises leaves the curriculum completely open.

Licensed trainings for FLEX contribute the following points (credit points) to the permission
for the final Advanced-Level certification exam:
Methodical competence: 10 points
Technical competence: 20 points
Communicative competence: 00 points

Outline

Modularization

Integration

Operations, monitoring and
error analysis

Installation and roll-out

Case study

Lookout

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 7 of 24

1.3 Prerequisites for the FLEX module

Participants should have the following knowledge and / or experience:
• Fundamentals of the description of architectures using various views, comprehen-

sive concepts, design decisions, boundary conditions etc., as taught in the CPSA-F
(Foundation Level).

• Experience with implementation and architecture in agile projects.
• Experiences from the development and architecture of classical systems with the

typical challenges.

Useful for understanding some concepts are also:

• Distributed systems
o Problems and challenges in the implementation of distributed systems
o Typical distributed algorithms
o Internet protocols

• Knowledge about modularisations
o Functional modularisation
o Technical implementations like packages or libraries

• Classical operation and deployment processes

1.4 Outline of the curriculum for FLEX

The individual sections of the curriculum are described as follows:
• Terms/Concepts: Main core concepts of this topic.
• Teaching/Practice Time: Specifies the teaching and practice time that at least has to

be spent on this topic or its exercise in the accredited training.
• Learning goals: Describes the content to be communicated, including its core terms

and concepts.
This section also outlines the knowledge to be acquired in appropriate training courses. The
learning goals are differentiated into the following categories or sub-sections:

• What should the participants be capable of? The participants should be able to ap-
ply these contents independently after the training. Within the course, these con-
tents are covered by exercises and are part of the FLEX module examination and / or
the final examination of the iSAQB Advanced Level.

• What should the participants understand? These contents can be verified in the
FLEX module examination.

• What should the participants know? These contents (terms, concepts, methods,
practices, etc.) can help to understand or motivate the topic. These contents are not
part of the examinations. They are discussed in trainings, but not necessarily very
detailed.

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 8 of 24

1.5 Additional information, terms and translations

As far as required for the understanding of the curriculum, we have included and defined
functional terms in the iSAQB glossary, and also added translations of the original literature
if necessary.

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 9 of 24

2 Motivation

Duration: 120 min Exercise time: none

2.1 Terms and concepts

Availability, reliability, time-to-market, flexibility, predictability, reproducibility, homogenisa-
tion of the stages, internet / web-scale, distributed systems, parallelism of feature develop-
ment, evolution of the architecture (build for replacement), heterogeneity, automation.

2.2 Learning goals

2.2.1 What shall participants be capable of?

• Architectures can be optimised for different quality goals. In this module, partici-
pants learn how to create flexible architectures that allow rapid deployment and
thus rapid feedback from the application of the system.

• They have understood the drivers for the architecture types taught in this curriculum
module, the implications of these drivers for the architectures, and the interaction
of the architectures with the organisation, processes, and technologies.

• They have understood the trade-offs of the architecture types presented (at least
Microservices, Self-Contained Systems and Deployment Monoliths) and are able to
communicate them as well as apply them in the context of concrete projects / sys-
tem developments in order to make appropriate architectural decisions.

2.2.2 What should participants understand?

• The architecture has crucial influence on the ability to quickly bring new features
into production.

• Dependencies between components of different development teams influence the
duration until software can be put into production because they increase the com-
munication costs and delays are propagated.

• Automation of activities (such as test and deployment processes) increases the re-
producibility, predictability, and quality of results of these processes. This can lead
to an improvement of the overall development process.

• Unification of the different environments (e. g., development, test, QA, production)
reduces the risk of lately detected and (in other environments) non-reproducible er-
rors due to different configurations.

• Unification and automation are essential aspects of continuous delivery.
• Continuous integration is a prerequisite for continuous delivery.
• A suitable architecture is the prerequisite for the parallelisation of the development

as well as the independent commissioning of independent modules. This can, but
do not have to be "services".

• Some change scenarios are easier to implement in monolithic architectures. Other
change scenarios are easier to implement in distributed service architectures. Both
approaches can be combined.

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 10 of 24

• There are different types of isolation with different advantages. A failure, for exam-
ple, can be limited to a single component or changes can be limited to a single
component.

• Certain types of isolation are much easier to implement between processes with re-
mote communication.

• Remote communication, however, has disadvantages - for example many new
sources of errors.

2.2.3 What should participants know?

• Conway’s law
• Partitionability as a quality feature
• Round trip times with the IT supply chain as a competitive factor
• Building a continuous delivery pipeline
• The different test phases of a continuous delivery pipeline

2.3 References

• Jez Humble, David Farley: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation, Addison-Wesley, 2010, ISBN 978-0-
32160-191-9

• Eberhard Wolff: A Practical Guide to Continuous Delivery, Addison-Wesley, 2017,
ISBN 978-0-13-469147-3

• Jez Humble, Barry O'Reilly, Joanne Molesky: Lean Enterprise: Adopting Continuous
Delivery, DevOps, and Lean Startup at Scale, O’Reilly 2014, ISBN 978-1-44936-842-
5

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 11 of 24

3 Modularisation

Duration: 120 min Exercise time: 30 min

3.1 Terms and concepts

• Motivation for decompositioning into smaller systems
• Different kinds of modularisation, coupling
• System limits as a way of isolation
• Hierarchical structure
• Application, Self-Contained System, Microservice
• Domain-Driven Design Concepts and "Strategic Design", Bounded Contexts

3.2 Learning goals

3.2.1 What shall participants be capable of?

• Participants can design a decomposition into individual blocks for a given problem.
• The participants should consider the organisation's communication structure when

setting the module boundaries (Conway's law).
• The participants should be able to evaluate and select technical modularisation con-

cepts in a project-specific manner.
• The participants should be able to illustrate and analyse the relationships between

modules as well as between modules and subdomains (context mapping).
• Participants can evaluate the consequences of different modularisation strategies

and compare the efforts of the modularisation with the expected benefits.
• Participants can assess the impact of the modularisation strategy on the autonomy

of building blocks at development time and at run time.
• The participants can draw up a plan to divide a deployment monolith into small ser-

vices.
• Participants can develop a concept to build a system of services.
• The participants can choose a suitable modularisation as well as a suitable granular-

ity of the modularisation - depending on the organisation and the quality goals.

3.2.2 What should participants understand?

• Participants understand that each type of building blocks requires a handy label, as
well as a description,

o what makes up this kind of building block
o how such a building block is integrated at runtime
o how such a building block is built (in the sense of the build system)
o how such a building block is deployed
o how such a building block is tested
o how such a building block is scaled

• Participants understand that an integration strategy decides whether a dependency

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 12 of 24

o emerges at runtime
o emerges during development time, or
o emerges at the deployment.

• Modularisation helps to achieve goals such as parallelisation of development, inde-
pendent deployment / interchangeability at runtime, rebuild / reuse of modules and
easier understanding of the overall system.

• Therefore, techniques like continuous delivery and the automation of test and de-
ployment are important influences on the modularisation.

• Modularisation means the decomposition of a system into smaller parts. Re-inte-
grating these parts after the decomposition causes organisational and technical ef-
forts. These efforts have to be exceeded by the advantages achieved by the modu-
larisation.

• Participants understand that in order to achieve higher autonomy of the develop-
ment teams, it is better to divide a component along functional boundaries rather
than along technical boundaries.

• Depending on the chosen modularisation technology, there is coupling on different
levels:

o Sourcecode (modularisation with files, classes, packages, namespaces etc.)
o Built target (modularisation with JARs, libraries, DLLs, etc.)
o Runtime environment (operating system, virtual machine or container)
o Network protocol (distribution to different processes)

• A coupling at the source code level requires very close cooperation as well as com-
mon SCM. A coupling at the level of the built target means that the building blocks
must usually be deployed together. Only a distribution to different applications /
processes is feasible with regard to independent deployment.

• Participants understand that a complete isolation between building blocks can only
be ensured by a separation in all phases (development, deployment and runtime). If
this is not the case, undesirable dependencies cannot be excluded. At the same
time, the participants also understand that it can be useful to forego complete isola-
tion for reasons such as efficient resource usage or complexity reduction.

• Participants understand that, when distributing to different processes, some de-
pendencies no longer exist in the implementation, but rather arise at runtime. This
increases the requirements for monitoring these interfaces.

• Microservices are independent deployment units and therefore independent pro-
cesses that expose their functions through lightweight protocols, but may also have
a UI. Different technology decisions can be made for the implementation of each
individual microservice.

• A Self-Contained System (SCS) is a functionally independent system. It usually in-
cludes UI and persistence. It may consist of several Microservices. Usually a SCS co-
vers a functional bounded context.

• The module division can be done along functional or technical boundaries. In most
cases, a functional division is recommended, because in this case functional require-
ments can be assigned more clearly to a concrete module and therefore it is not
necessary to adapt several modules for the implementation of a single functional

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 13 of 24

requirement. Thereby, each module can have its own domain model in the sense of
a bounded context and thus different views on a business object with its own data.

• Transactional consistency through process boundaries can only be achieved via ad-
ditional mechanisms. So, if a system is divided into several processes, the module
boundary often also represents the limit for transactional consistency. Therefore, a
DDD aggregate must be managed in one module.

• Participants understand which modularisation concepts can be used not only for
transactional but also for batch- and data-flow-oriented systems.

• Different levels of specifications can be useful for the development of a module.
Some specifications should better be superior valid for the integration with other
building blocks of this type, in general. The overarching decisions that affect all sys-
tems can form a macro architecture, including, for example, communications proto-
cols or operating standards. Micro architecture can be the architecture of a single
system. It is largely independent of other systems. Excessive limitations at the macro
architecture level will lead to an overall architecture that can be applied to fewer
problems

3.2.3 What should participants know?

• The participants should know various technical modularisation options: e. g., source
code files, libraries, frameworks, plugins, applications, processes, Microservices,
SCS.

• The participants should know the following terms from the domain-driven design:
Aggregate Root, Context Mapping, Bounded Contexts and relationships between
them (e. g., Anti-Corruption Layer).

• The participants should know "The Twelve-Factor App".
• The participants should know Conway’s law.

3.3 References

• Eric Evans: Domain-Driven Design: Tackling Complexity in the Heart of Software,
Addison-Wesley Professional, 2003

• http://12factor.net/
• Sam Newmann: Building Microservices: Designing Fine-Grained Systems, O'Reilly

Media, 2015
• Eberhard Wolff: Microservices – Flexible Software Architecture, Addison-Wesley,

2016, ISBN 978-0134602417
• http://martinfowler.com/articles/microservices.html

http://12factor.net/
http://martinfowler.com/articles/microservices.html

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 14 of 24

4 Integration

Duration: 90 min Exercise time: 30 min

4.1 Terms and concepts

Frontend integration, legacy systems, authentication, authorisation, (loose) coupling, scala-
bility, messaging patterns, domain events, decentralised data management.

4.2 Learning goals

4.2.1 What shall participants be capable of?

• The participants should choose an integration strategy that best suits the particular
problem. This can be, for example, front-end integration, integration via RPC mech-
anisms, message-oriented middleware, REST, or replication of data.

• Participants should be able to design a suitable approach for implementing security
(authorisation / authentication) in a distributed system.

• Based on these approaches, participants should be able to design a macro architec-
ture that covers at least communication and security.

• For the integration of legacy systems, it has to be defined how to handle old data
models. For this purpose, the approach of strategic design can be used with essen-
tial patterns such as anti-corruption layers.

• The participants can propose a suitable integration depending on the quality goals
and the knowledge of the team.

4.2.2 What should participants understand?

• The participants should know the benefits and drawbacks of different integration
mechanisms. These include front-end integration with Mash Ups, Middle Tier inte-
gration, and integration through databases or database replication.

• Participants should understand the implications and limitations that arise from the
integration of systems across different technologies and integration patterns, relat-
ing to, for example, security, response time, or latency.

• Participants should have a basic understanding of the implementation of integra-
tions using Strategic Design from Domain Driven Design and know fundamental
patterns.

• RPC means mechanisms for synchronously calling functionality in another process
over computer boundaries. This results in coupling in many respects (time, data for-
mat, API). This coupling has a negative effect on the availability and response times
of the system. REST makes guidelines that can reduce this coupling (Hypermedia,
standardised API). However basically, the temporal coupling remains.

• With integrating through messaging, systems communicate through the asynchro-
nous exchange of messages. The systems are thus decoupled in time. Technically,
this is achieved by means of indirection via a middleware. Messages can optionally
be persisted, filtered, transformed, etc. There are different messaging patterns like
Request / Reply, Publish / Subscribe or Broadcast.

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 15 of 24

• An integration via data enables high autonomy, nevertheless it is bought by the ne-
cessity for redundant data storage and the necessary synchronisation. It must not be
assumed that other systems use the same schemes, because this prevents an inde-
pendent development of the schemata. Therefore, an adequate transformation has
to be provided for the integration.

• In an event-driven architecture (EDA), RPC is avoided or reduced by publishing do-
main events. Domain events describe state changes. Interested systems can process
these messages (Publish / Subscribe). This procedure affects how the state is stored.
While, in an RPC-based integration the server has to store the data, with EDA this is
the responsibility of the subscriber. Thus, replicas arise (decentralised data storage).
Thereby, the subscribers act as a cache for the publisher. Additional subscribers can
be added without affecting the publisher (except by polling). Monitoring of the
event flows is important.

• Domain events can be published via messaging. The publisher pushes the messages
into a messaging system. Alternatively, the messages can be polled from the pub-
lisher (e. g., Atom / RSS). When using a messaging system, subscribers can receive
the messages by push or pull. This has implications for dealing with backpressure.

4.2.3 What should participants know?

• Typical distributed security mechanisms such as OAuth or Kerberos
• Approaches for front-end integration
• Technologies for the integration of services: REST, RPC, message-oriented middle-

ware
• Challenges of the usage of shared data
• Database replication mechanisms using ETL tools or other approaches
• Messaging Patterns (Request / Reply, Publish / Subscribe, etc.)
• Messaging systems (RabbitMQ, Kafka etc.), protocols (AMQP, MQTT, STOMP etc.)

and APIs (JMS)

4.3 References

• Eric Evans: Domain-Driven Design: Tackling Complexity in the Heart of Software,
Addison-Wesley, 2003, ISBN 978-0-32112-521-7

• http://oauth.net/
• Gregor Hohpe, Bobby Woolf: Enterprise Integration Patterns: Designing, Building,

and Deploying Messaging Solutions, Addison-Wesley, 2003, ISBN 978-0-32120-
068-6

http://oauth.net/

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 16 of 24

5 Installation and Roll Out

Duration: 90 min Exercise time: 30 min

5.1 Terms and concepts

Modern operations, DevOps, Infrastructure as Code, Configuration Management.

5.2 Learning goals

5.2.1 What shall participants be capable of?

• The participants should be able to roughly sketch a concept and understand how to
automatically deploy a system as simple as possible. They should be able to weigh
between the different technological approaches.

• Participants should be able to design and evaluate deployment automation. For ex-
ample, they have to be able to assess the quality and testing of these approaches.
They have to be able to select an appropriate approach for a project scenario.

• The participants should be able to sketch a team structure based on the DevOps or-
ganisation model.

5.2.2 What should participants understand?

• The foundation for automating deployment is virtualisation or the cloud with Infra-
structure as a Service (IaaS). A lightweight alternative are Linux containers as imple-
mented by Docker.

• Deployment of a large number of servers and services is virtually impossible without
a deployment automation.

• Modern deployment tools allow to automatically install software on computers. In
addition to the application itself, the complete infrastructure can also be created au-
tomatically. In this case installations are idempotent, which means that they always
lead to the same result regardless of the initial state of the system.

• Immutable servers are never changed. If a new version of the software has to be
taken into operation, the server is rebuilt from scratch. This can be simpler and
more reliable than to rely on idempotent tools.

• PaaS (Platform as a Service) provides a complete platform where applications can be
deployed in. Since in this case the infrastructure is not built up by oneself, the ap-
proach is simpler, but also less flexible.

• Concepts such as tests or code reviews are also indispensable for deployment auto-
mation. Infrastructure becomes code that must meet the same requirements as pro-
ductive code (Infrastructure as Code).

• To support the deployment, the result of a build process can be packages for an op-
erating system or even images for virtual machines.

• The environments of a developer should ideally match the production environ-
ments. With modern tools, it is possible to create and maintain such an environ-
ment at the push of a button.

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 17 of 24

• The complexity of the deployment becomes a further quality feature of the system
and affects architecture tools.

• DevOps leads to a different team structure. Beside development, also more atten-
tion has to be paid to operations. In addition to provisioning, this also affects con-
tinuous delivery (see chapter "Continuous Delivery").

5.2.3 What should participants know?

• Basic concept of modern infrastructure such as IaaS, PaaS and virtualisation
• Concepts of deployment tools like Chef, Puppet, Ansible or Salt
• Organisation forms for DevOps
• Concepts of deployments with package managers or Linux containers
• Various PaaS platforms and their concepts

5.3 References

• Gottfried Vossen, Till Haselmann, Thomas Hoeren: Cloud-Computing für Unterneh-
men: Technische, wirtschaftliche, rechtliche und organisatorische Aspekte, dpunkt,
2012, ISBN 978-3-89864-808-0

• Eberhard Wolff, Stephan Müller, Bernhard Löwenstein: PaaS - Die wichtigsten Java
Clouds auf einen Blick, entwickler.press, 2013

• Jez Humble, David Farley: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation, Addison-Wesley, 2010, ISBN 978-0-
32160-191-9

• Eberhard Wolff: A Practical Guide to Continuous Delivery, Addison-Wesley, 2017,
ISBN 978-0-13-469147-3

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 18 of 24

6 Operations, Monitoring and Error Analysis

Duration: 90 min Exercise time: 30 min

6.1 Terms and concepts

Monitoring, Operations, Logging, Tracing, Metrics.

6.2 Learning goals

6.2.1 What shall participants be capable of?

• The participants should be able to roughly sketch and understand a concept that
allows to monitor a system, that means assess the status, avoid errors and devia-
tions from the regular operation as far as possible or at least detect and handle
them as early as possible.

• In the concept, they may focus on logging, monitoring and the data that is required
for that purpose, depending on the specific project scenario

• Participants should be able to meet architecture requirements in a way that sup-
ports the usage of appropriate tools, while reasonably dealing with system re-
sources.

6.2.2 What should participants understand?

• Logging and monitoring can include both functional as well as technical data.
• The appropriate selection of data is essential for reliable and meaningful monitoring

and logging.
• In order to achieve systems that are ready to operate, in particular those composed

of many individual subsystems, the support of operations has to be an integral part
of the architecture concepts.

• In order to achieve the highest possible transparency, a great deal of data has to be
collected, but also be pre-aggregated and made evaluable.

• The participants should understand which information can be obtained from log
data and which may (better) be obtained by instrumentation of the code with met-
ric probes.

• The participants should understand how a typical centralised log data administra-
tion is built and what impact it has on the architecture.

• The participants should understand how a typical centralised metrics pipeline is built
(capture, collect & sample, persist, query, visualise) and the impact it has on the ar-
chitecture (performance overhead, memory consumption, ...).

• The participants should understand the various options of logging, monitoring and
an Operations DB (see M. Nygard, Release IT!), which to use wherefore and how to
meaningfully combine these tools.

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 19 of 24

6.2.3 What should participants know?

• Tools for centralised log data management
• Tools for centralised metrics processing
• Difference between business, application and system metrics
• The meaning of important, system-independent application and system metrics

6.3 References

• Eberhard Wolff: A Practical Guide to Continuous Delivery, Addison-Wesley, 2017,
ISBN 978-0-13-469147-3

• Michael Nygard: Release It!: Design and Deploy Production-Ready Software, Prag-
matic Programmers, 2007, ISBN 978-0-97873-921-8

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 20 of 24

7 Case Study

Duration: 90 min Exercise time: 60 min

Within the scope of a curriculum-oriented training, a case study has to explain the concepts
in practice.

7.1 Terms and concepts

The case study does not introduce new terms and concepts.

7.2 Learning goals

The case study is not intended to impart new learning goals, but to deepen the topics
through hands-on exercises and to illustrate the practice.

7.3 References

None. The training providers are responsible for the selection and description of examples.

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 21 of 24

8 Perspective

Duration: 120 min Exercise time: 0 min

The lookout presents advanced topics that participants may dive into. So, they gain a
deeper understanding of the challenges of implementing flexible systems. In addition, they
learn other factors influencing the choice of technologies.

8.1 Terms and concepts

• Consistency models: ACID, BASE, partitioning, CAP
• Resilience: Resilient Software Design, Stability, Availability, Graceful Degradation,

Circuit Breaker, Bulkhead

8.2 Learning goals

8.2.1 What shall participants be capable of?

• The participants should know various consistency models. They should basically
know the trade-offs of the different consistency models.

• Depending on the requirements and general conditions, they should be able to de-
cide whether traditional stability approaches are adequate or resilient software de-
sign is required.

8.2.2 What should participants understand?

• Consistency models
o The need for ACID transactions is much lower than is often assumed.
o Different scaling, distribution, and availability requirements require different

consistency models.
o The CAP theorem describes a spectrum in which, depending on the given

requirements, a suitable consistency model can be selected very fine-
grained.

o BASE transactions guarantee consistency, however, they may not be atomic
and isolated as ACID transactions, which may lead to temporary inconsisten-
cies becoming visible.

• Resilience
o Traditional stability approaches (error avoidance strategies) on infrastructure

levels are generally no longer sufficient for today's distributed, highly net-
worked system landscapes.

o There is no Silver Bullet for Resilient Software Design, i. e., the relevant
measures and applied patterns and principles depend on the requirements,
the general conditions and the persons involved.

8.2.3 What should participants know?

• Consistency models
o Characteristics of and differences between ACID and BASE transactions

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 22 of 24

o Some product examples from different categories (e. g., NoSQL, configura-
tion tools, service discovery)

o CAP for describing and explaining consistency models
• Resilience

o The formula for availability and the different approaches to maximise availa-
bility (maximising MTTF, minimising MTTR)

o Isolation and latency monitoring as useful starting principles of Resilient
Software Design

o Basic Resilience patterns such as bulkhead, circuit breaker, redundancy, fail-
over

8.3 References

• Andrew Tanenbaum, Marten van Steen, Distributed Systems – Principles and Para-
digms, Prentice Hall, 2nd Edition, 2006

• Leslie Lamport, The Part-Time Parliament, ACM Transactions on Computer Systems
16, 2 (May 1998), 133-169

• Eric Brewer, Towards Robust Distributed Systems, PODC Keynote, July-19-2000
• Mikito Takada, Distributed Systems for Fun and Profit, http://book.mixu.net/distsys/

(Guter Einstieg und Überblick)
• Michael T. Nygard, Release It!, Pragmatic Bookshelf, 2007
• Robert S. Hanmer, Patterns for Fault Tolerant Software, Wiley, 2007
• James Hamilton, On Designing and Deploying Internet-Scale Services, 21st LISA

Conference 2007

http://book.mixu.net/distsys/

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 23 of 24

9 Sources and references to information systems for agile envi-

ronments

This section contains sources, which are referenced in whole or in part in the curriculum.

B
Eric Brewer, Towards Robust Distributed Systems, PODC Keynote, July-19-2000

E
Eric Evans: Domain-Driven Design: Tackling Complexity in the Heart of Software, Addison-
Wesley Professional, 2003

F
Martin Fowler: Microservices, http://martinfowler.com/articles/microservices.html

H
James Hamilton, On Designing and Deploying Internet-Scale Services, 21st LISA Conference
2007
Robert S. Hanmer, Patterns for Fault Tolerant Software, Wiley, 2007
Gregor Hohpe, Bobby Woolf: Enterprise Integration Patterns: Designing, Building, and De-
ploying Messaging Solutions, Addison-Wesley, 2003, ISBN 978-0-32120-068-6
Jez Humble, David Farley: Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation, Addison-Wesley, 2010, ISBN 978-0-32160-191-9
Jez Humble, Barry O'Reilly, Joanne Molesky: Lean Enterprise: Adopting Continuous Delivery,
DevOps, and Lean Startup at Scale, O’Reilly 2014, ISBN 978-1-44936-842-5

L
Leslie Lamport, The Part-Time Parliament, ACM Transactions on Computer Systems 16, 2
(May 1998), 133-169

N
Sam Newmann: Building Microservices: Designing Fine-Grained Systems, O'Reilly Media,
2015
Michael T. Nygard, Release It!, Pragmatic Bookshelf, 2007

O
OAuth: http://oauth.net/

T
Mikito Takada, Distributed Systems for Fun and Profit, http://book.mixu.net/distsys/ (Guter
Einstieg und Überblick)
Andrew Tanenbaum, Marten van Steen, Distributed Systems – Principles and Paradigms,
Prentice Hall, 2nd Edition, 2006

http://martinfowler.com/articles/microservices.html
http://oauth.net/
http://book.mixu.net/distsys/ (Guter

iSAQB Curriculum for Advanced Level: FLEX

© 2014 iSAQB e. V. V 1.1 as of November 9, 2015 Page 24 of 24

V
Gottfried Vossen, Till Haselmann, Thomas Hoeren: Cloud-Computing für Unternehmen:
Technische, wirtschaftliche, rechtliche und organisatorische Aspekte, dpunkt, 2012, ISBN
978-3-89864-808-0

W
Eberhard Wolff: Microservices – Flexible Software Architecture, Addison-Wesley, 2016, ISBN
978-0134602417
Eberhard Wolff: A Practical Guide to Continuous Delivery, Addison-Wesley, 2017, ISBN
978-0-13-469147-3
Eberhard Wolff, Stephan Müller, Bernhard Löwenstein: PaaS - Die wichtigsten Java Clouds
auf einen Blick, entwickler.press, 2013

